1^2+x^2=32^2

Simple and best practice solution for 1^2+x^2=32^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1^2+x^2=32^2 equation:



1^2+x^2=32^2
We move all terms to the left:
1^2+x^2-(32^2)=0
We add all the numbers together, and all the variables
x^2-1023=0
a = 1; b = 0; c = -1023;
Δ = b2-4ac
Δ = 02-4·1·(-1023)
Δ = 4092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4092}=\sqrt{4*1023}=\sqrt{4}*\sqrt{1023}=2\sqrt{1023}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1023}}{2*1}=\frac{0-2\sqrt{1023}}{2} =-\frac{2\sqrt{1023}}{2} =-\sqrt{1023} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1023}}{2*1}=\frac{0+2\sqrt{1023}}{2} =\frac{2\sqrt{1023}}{2} =\sqrt{1023} $

See similar equations:

| 14k−11k=9 | | 36+2y=18 | | 5(x=6)=50 | | 4x+2/6=-5 | | 7y-17+2y=8y+15 | | 5r=−35 | | 5c+6=11 | | 2x–5=x+10  | | 5x-115/7=4x | | 33-4x=3x | | -2x=4=-14 | | 7x+50=196 | | 4(a-3)=5(a+6) | | 4x=3x+33 | | 3x+40=2(x+30) | | (40+x)*0.3=x | | 6x-12=6x+5 | | 40=x/0.3-x | | 5(3x–1)=7x–3 | | x*A=-20 | | x-1.3=5.45 | | -4x-12=-6 | | 9x–12–7x+8=15x+16–8x | | 14=h9 | | 10x+3-7x+7=210 | | 14=9h | | 18-8y=-14 | | x−12=−4−(−7) | | 3+10y=22 | | f+12=3f=-20 | | 5x-6=-3x+6 | | -4g=36/4 |

Equations solver categories